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Overview

Mobile code provides a convenient, efficient, and economical way to extend
the functionality and improve the performance of networked computing sys-
tems. It is an approach that has been widely embraced, as evidenced by
today's operating systems, web browsers, and applications with their sup-
port for "plug-and-play", Javascript, downloaded helper applications, and
executable attachments. Yet today's security architectures provide poor
protection from faulty, much less from malicious, extensions. Our informa-
tion systems are thus increasingly susceptible to attacks-attacks that can
have devastating consequences.

This project is investigating programming language technology-program
analysis and program rewriting-for defending software systems against at-
tacks from mobile code and system extensions. The approach promises to
support a wide range of flexible, fine-grained access-control and information-
flow policies. Only a small trusted computing base seems to be required.
And the run-time costs of enforcement should be low.

Our progress over the past year is summarized below. Details can be
found in the publications whose citations are given following all the sum-
maries. A list of DoD interactions and technology transitions appears at the
end of the report.



In-lined Reference Monitors

In-lined reference monitors are a new approach to implementing traditional
reference monitors. A desired end-to-end security policy is formulated using
a high-level declarative policy language., and then a rewriting tool is used
to automatically rewrite untrusted code into code that respects the policy.
The rewriting tool works by inserting extra state and dynamic checks into
the untrusted code so that the code becomes self-monitoring.

Over the past year, we made progress towards understanding issues as-
sociated with the deployment of IRMs in a production operating system.
A set of kernel modifications was developed to support a prototype IRM
rewriter in Microsoft's Windows. This work seems to suggest the need for
mechanism to identify which policy is applied to any given executable and
for mechanism to manage multiple executables (each enforcing a different
policy). For example, .NET caches dll's (executables), and the architecture
for how that cache is managed needs to work differently when the same
dll could have been rewritten in multiple ways (to enforce one or another
different policies).

In addition, a prototype MSIL (Microsoft Intermediate language) in-
lined reference monitor (IRM) realization is now operational. It imple-
ments an aspect-oriented programming metaphor for MSIL assembly lan-
guage (rather than for a high-level language). An aspect-oriented program
comprises aspects, each of which consists of a point-cut and some advice.
The point-cut is a predicate that specifies where to do rewriting in target
code, and the advice specifies how to do the rewriting. Designing a point-cut
language that provides complete visibility at a high-level into an assembly
language is an interesting challenge; we plan next to turn our attention to
this.

Cyclone Compiler

Today, our computing and communications infrastructure is built using un-
safe, error-prone languages such as C or C++ where buffer overruns, for-
mat string errors, and space leaks are not only possible, but frighteningly
common. In contrast, type-safe languages, such as Java, Scheme, and ML,
ensure that such errors either cannot happen (through static type-checking
and automatic memory management) or at least are caught at the point of
failure (through dynamic type and bound checks.) This fail-stop guarantee
is not a total solution, but it does isolate the effects of failures, facilitates
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testing and determination of the true source of failures, and enables tools
and methodologies for achieving greater levels of assurance.

The obvious question is: "Why don't we re-code our infrastructure us-
ing type-safe languages?" Though such a technical solution looks good on
paper, the cost is simply too large. For instance, today's operating systems
consist of tens of millions of lines of code. Throwing away all of that C code
and reimplementing it in, say Java, is simply too expensive, and in some
situations, not even possible.

An alternative approach is to try to adapt safe language technology to
legacy C and C++ systems. The ideal solution should:

* catch most errors at compile time,

9 give a fail-stop guarantee at run time, and

* scale to millions of lines of code

while simultaneously:

"* minimizing the cost of porting the code from C/C++,

"• interoperating with legacy code,

"* giving programmers control over low-level details needed to build sys-
tems.

As a step towards these goals, we have been developing Cyclone, a type-
safe programming language that can be roughly characterized as a "superset
of a subset of C." The type system of Cyclone accepts many C functions
without change and uses the same data representations and calling conven-
tions as C for a given type constructor. It also rejects many C programs to
ensure safety. For instance, it rejects programs that perform (potentially)
unsafe casts, that use unions of incompatible types, that (might) fail to ini-
tialize a location before using it, that use certain forms of pointer arithmetic,
or that attempt to do certain forms of memory management.

All of the analyses used by Cyclone are local (i.e., intra-procedural) so
we can ensure scalability and separate compilation. The analyses have also
been carefully constructed to avoid unsoundness in the presence of threads.
The price paid is that programmers must sometimes change type definitions
or prototypes of functions, and occasionally they must rewrite code.

We find that programmers must touch about 10% of the code when
porting from C to Cyclone. Most of the changes involve choosing pointer
representations and only a very few involve region annotations (around 0.6
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% of the total changes.) In the future, we hope to minimize this burden by
providing a porting tool that utilizes a more global analysis to determine
the appropriate representation.

The performance overhead of the dynamic checks depends upon the ap-
plication. For systems applications, such as a simple web server, we see no
overhead at all. This is not surprising, as these applications tend to be I/O-
bound. For scientific applications, we see a much larger overhead (around 5x
for a naive port, and 3x with an experienced programmer). We believe much
of this overhead is due to bounds and null pointer checks on array access.
We have incorporated a simple, intra-procedural analysis to eliminate many
of those checks and indeed, this results in a marked improvement. However,
some of the overhead is also due to the use of "fat pointers" and the fact
that GCC does not always optimize struct manipulation. By unboxing the
structs into variables, we may find a marked improvement.

Secure Program Partitioning

Our secure program partitioning provides the means to ensure that data
confidentiality and integrity are preserved in distributed systems that con-
tain untrusted hosts and mutually distrusting principals. This problem is
particularly relevant to information systems used by mutually distrusting
organizations, such as the dynamic coalitions that arise in military settings.

In our approach, programs are automatically partitioned into communi-
cating subprograms that run on the available, partially trusted hosts. The
partitioning automatically extracts a secure communications protocol, and if
any host is subverted, then only principals that have explicitly stated trust
in that host need fear a violation of confidentiality. That is, for a given
principal p, the partitioned program we create is robust against attacks on
hosts not trusted by p. To protect data integrity, information and code are
also replicated across the available hosts.

We have implemented these techniques in Jif/split, an extension to our
publicly released Jif compiler that statically enforces information flow con-
trol, in conjunction with a distributed run-time system that securely exe-
cutes partitioned programs while guarding against subverted or malicious
hosts. New protocols had to be developed in order to permit secure transfer
of control between one group of host replicas and another. And to under-
stand the practicality of our approach, secure distributed systems have been
implemented using Jif/split, including various secure auction protocols. Per-
formance of the system is quite reasonable, despite the fine-grained program
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partitioning.
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DoD Interactions and Technology Transitions

o Schneider chaired a study for DARPA IPTO Program Manager Jay
Lala on promising research directions for Self-Healing Networked In-
formation Systems.

o Morrisett and Schneider continue working with Microsoft on develop-
ing a .NET version of our in-lined reference monitor (IRM) approach
to security-policy enforcement. Next Fall, Cornell graduate student
Kevin Hamlen will spend a semester visiting Microsoft Research (in
Cambridge, England). The MSIL rewriter we have developed uses
some software developed there, and this visit will speed the implemen-
tation of our new IRM tool.

o Researchers at Carnegie-Mellon University, Princeton University, Uni-
versity of California (Riverside), University of Newcastle-Upon-Tyne,
and Intel Research are all now building on PoET/PSLang IRM tools
developed by Schneider and collaborators.

e Further public releases of Myers' Jif compiler have been made available
at the Jif web site, http://www.cs.cornell.edu/jif. The Jif language
extends the Java programming language with support for information
flow control. The Jif compiler is implemented on top of the Polyglot ex-
tensible compiler framework for Java. The Polyglot framework has also
been released publicly at http://www.cs.cornell.edu/projects/polyglot,
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and researchers at Princeton University are using this framework in
their own research. The releases of both Jif and Polyglot are provided
as Java source code and work on Unix and Windows platforms.

e AT&T research is working with us to develop the Cyclone language,
compiler, and tools. In addition, researchers at the University of
Maryland, the University of Utah, Princeton, and the University of
Pennsylvania, and Cornell are all using Cyclone to develop research
prototypes.
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